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Bunyakovsky’s Conjecture

- Prime numbers are largely elusive and functions to generate them are complex and
computationally intensive.
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Bunyakovsky’s Conjecture

- Prime numbers are largely elusive and functions to generate them are complex and
computationally intensive.

- However, there is a polynomial f € Z[x] such that f(n) is prime for infinitely many
nez.

- Of course, f(x) = x.

- Are there any more?
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Bunyakovsky’s Conjecture

- Consider the polynomial p(x) = x? + X + 41
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Bunyakovsky’s Conjecture

- Consider the polynomial p(x) = x? + X + 41
- If we calculate its first few values, see that

p(0) = 41

- p(1) =43

p(2) =47

* p(3) =53
l
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Bunyakovsky’s Conjecture

- Consider the polynomial p(x) = x? + X + 41
- If we calculate its first few values, see that

- It turns out p(n) is prime for all n € {0,...,39}

Patterns in Primes

2/



Bunyakovsky’s Conjecture

- Consider the polynomial p(x) = x? + X + 41
- If we calculate its first few values, see that

p(0) = 41

- p(1) =43

- p(2) =47

* p(3) =53
l

- It turns out p(n) is prime for all n € {0,...,39}
- Even though p(40) is composite, p(42) is prime again.
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Bunyakovsky’s Conjecture

- Consider the polynomial p(x) = x? + X + 41
- If we calculate its first few values, see that

p(0) = 41
- p(1) = 43
- p(2) =47
- p(3) =53
are all prime

- It turns out p(n) is prime for all n € {0,...,39}
- Even though p(40) is composite, p(42) is prime again.
- Is p prime infinitely often?
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Bunyakovsky’s Conjecture

- Forall f € Z[x], do there exist infinitely many n € N such that f(n) is prime?
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Bunyakovsky’s Conjecture

- Forall f € Z[x], do there exist infinitely many n € N such that f(n) is prime?
- No!

Patterns in Primes 3/



Bunyakovsky’s Conjecture

- Forall f € Z[x], do there exist infinitely many n € N such that f(n) is prime?
- No!

- If we stick to the convention that prime numbers are positive then since polynomials
like —x? + 4 are only positive for a finite number of natural numbers it can clearly
only be prime finitely many times.
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Bunyakovsky’s Conjecture

- What if f has a positive leading coefficient?
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Bunyakovsky’s Conjecture

- What if f has a positive leading coefficient?
- No!
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Bunyakovsky’s Conjecture

- What if f has a positive leading coefficient?
- No!

- Consider a polynomial like 2x?.

- This will only be prime for x = 1 as every other value will be divisible by 2.
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Bunyakovsky’s Conjecture

- What if f has a positive leading coefficient?

- No!

- Consider a polynomial like 2x?.

- This will only be prime for x = 1 as every other value will be divisible by 2.

- To account for this, we can discount polynomials f where ged(f(1), f(2),...) # 1.

- If this were the case, there must be some prime p such that p divides f(n) for all
natural numbers n.

- However, f(n) can only equal p a finite number of times.

- So every other value of f(n) will have p as a proper divisor.
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Bunyakovsky’s Conjecture

- What if fis also such that ged(f(1), f(2),...) =17
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Bunyakovsky’s Conjecture

- What if fis also such that ged(f(1), f(2),...) =17
- No!
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Bunyakovsky’s Conjecture

- What if fis also such that ged(f(1),f(2),...) =17

- No!

- Consider f(x) = 2x* — 7x? +3 = (x* — 3)(2¢ - 1).

- Note then that f(n) can be written as a product of two integers.
- One of these factors can be 41 only finitely many times.

- So f(n) can be prime only finitely many times.

- Clearly this is true whenever fis reducible.
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Bunyakovsky’s Conjecture

Bunyakovsky's Conjecture
Let f € Z[x] be such that

- fisirreducible over Z

- The leading coefficient of f is positive
- ged(f(1), f(2),f(3),...) =1

then there are infinitely many n € N such that f(n) is prime.

Viktor Bunyakovksy
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Bunyakovsky’s Conjecture

Bunyakovsky's Conjecture
Let f € Z[x] be such that

- fisirreducible over Z

- The leading coefficient of f is positive
- ged(f(1), f(2),f(3),...) =1

then there are infinitely many n € N such that f(n) is prime.

Viktor Bunyakovksy

We believe this to be true but we have only been able to prove so when fis linear. This
case is known as Dirichlet's theorem.
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Dirichlet’'s Theorem

- We consider the case f(x) = mx + a with a, m coprime
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Dirichlet’'s Theorem

- We consider the case f(x) = mx + a with a, m coprime

- See that this case is equivalent to asking if there are
infinitely many primes congruent to a mod m
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Dirichlet’'s Theorem

- We consider the case f(x) = mx + a with a, m coprime

- See that this case is equivalent to asking if there are
infinitely many primes congruent to a mod m

- We can prove some cases using a method similar to
Euclid’s.

Dirichlet
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Dirichlet’'s Theorem

- We consider the case f(x) = mx + a with a, m coprime

- See that this case is equivalent to asking if there are
infinitely many primes congruent to a mod m

- We can prove some cases using a method similar to
Euclid’s.

- How can we do it in general?

Dirichlet
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Dirichlet’'s Theorem

- Let's start simpler, can we prove such primes exist?
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Dirichlet’'s Theorem

- Let's start simpler, can we prove such primes exist?

- Assume it is true, so that, for all coprime integers m and q, there exists a prime
congruent to a mod m.

- Fix a pair of coprime integers mg and ag

- There thus exists x € Z such that p = mgx + ag is prime.

- Note, p and mq are coprime so there exists a y € Z such that g = moy + p is prime.
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Dirichlet’'s Theorem

- Let's start simpler, can we prove such primes exist?

- Assume it is true, so that, for all coprime integers m and q, there exists a prime
congruent to a mod m.

- Fix a pair of coprime integers mg and ag

- There thus exists x € Z such that p = mgx + ag is prime.

- Note, p and mq are coprime so there exists a y € Z such that g = moy + p is prime.
- But g = moy+ p = mo(x +y) + do.

- So, g is another prime congruent to ap mod mg but different from p.

- It follows by induction that there must be infinitely many primes congruent to
ap mod my.
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Dirichlet’'s Theorem

- Let's start simpler, can we prove such primes exist?

- Assume it is true, so that, for all coprime integers m and q, there exists a prime
congruent to a mod m.

- Fix a pair of coprime integers mg and ag

- There thus exists x € Z such that p = mgx + ag is prime.

- Note, p and mq are coprime so there exists a y € Z such that g = moy + p is prime.
- But g = moy+ p = mo(x +y) + do.

- So, g is another prime congruent to ap mod mg but different from p.

- It follows by induction that there must be infinitely many primes congruent to
ap mod my.

- Thus, if f(x) = mx + a is prime once then it is prime infinitely often.
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Dirichlet’'s Theorem

- To illustrate how the proof works, we will prove there are infinitely many primes.
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Dirichlet’'s Theorem

- To illustrate how the proof works, we will prove there are infinitely many primes.

- We can write 1
S ae= ML a-p"

neN p prime
- Taking logarithms and manipulating we get

Z = |ogZ—+g

p prime neN

- RHS diverges as s — 150 LHS must as well, thus there are infinitely many primes

Patterns in Primes 9/



Dirichlet’'s Theorem

- To illustrate how the proof works, we will prove there are infinitely many primes.

- We can write 1
S ae= ML a-p"

neN p prime
- Taking logarithms and manipulating we get

Z = Iogz — +g(s
p prime neN

- RHS diverges as s — 150 LHS must as well, thus there are infinitely many primes
- In a similar way, we can show that the series

1
>
p=a mod m
p prime

diverges as s — 1, proving Dirichlet's theorem.
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Green-Tao Theorem

- Recall, we found p(x) = x> + x + 41 was prime for its first 40 values.

- Now we know linear polynomials are prime infinitely often, can we beat that?
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Green-Tao Theorem

- Recall, we found p(x) = x> + x + 41 was prime for its first 40 values.

- Now we know linear polynomials are prime infinitely often, can we beat that?

Green-Tao Theorem
For all k € N there exists f € Z[x] linear such that f(n) is prime for all n € {0, ...,k —1}.
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Green-Tao Theorem

- For example, if k =10 we can consider f(x) = 210x + 199
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Green-Tao Theorem

- For example, if k =10 we can consider f(x) = 210x + 199

- The coefficients grow very quickly as k increases
- The 'smallest’ they can be for k = 20 is 18846497670x + 214861583621
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Green-Tao Theorem

- For example, if k =10 we can consider f(x) = 210x + 199

- The coefficients grow very quickly as k increases
- The 'smallest’ they can be for k = 20 is 18846497670x + 214861583621

- We expect the last prime in the sequence should be around

R/2
(I?e_"/>
2

whereyzIimn_m(—logn+1+%+...+%)
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Green-Tao Theorem

- For example, if k =10 we can consider f(x) = 210x + 199

- The coefficients grow very quickly as k increases

- The 'smallest’ they can be for k = 20 is 18846497670x + 214861583621
- We expect the last prime in the sequence should be around

R/2
(I?e_"/>
2

whereyzIimn_m(—logn+1+%+...+%)

- So if fwere to beat X2 + x + 41 and f(40) was prime then f(40) would be around
4.9 x 10%

- For comparison, there are roughly 7 x 10% atoms in a human body
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Green-Tao Theorem

One final remark:

- Suppose mx + a is prime for the first k% values

- Then mx? + a is prime for the first k values
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Schinzel’s Conjecture

Schinzel’s Conjecture

Let {f1,f2,...,fr} be a finite set of non-constant, irreducible
polynomials over Z with positive leading coefficients such
that there does not exist a prime p where p divides

fi(n) - - fr(n) for alln € N.

Then there are infinitely many n € Z such that fi(n), ..., fr(n) h—% ~—
are all prime. £

Andrzej Schinzel

This final condition prevents counter-examples such as {x,x + 1} where 2 always divides
x(x+1).
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Schinzel’s Conjecture

Schinzel's conjecture generalises many pre-existing
conjectures related to patterns in primes. In particular that
there exist infinitely many pairs of

- Sophie Germain primes: {x,2x + 1}

Sophie Germain

Patterns in Primes %/



Schinzel’s Conjecture

Schinzel's conjecture generalises many pre-existing
conjectures related to patterns in primes. In particular that
there exist infinitely many pairs of

- Sophie Germain primes: {x,2x + 1}

- Sexy prime: {x,x + 6}

Sophie Germain
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Schinzel’s Conjecture

Schinzel's conjecture generalises many pre-existing
conjectures related to patterns in primes. In particular that
there exist infinitely many pairs of

- Sophie Germain primes: {x,2x + 1}
- Sexy prime: {x,x + 6}
- Cousin primes: {x,x + 4}

Sophie Germain
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Schinzel’s Conjecture

Schinzel's conjecture generalises many pre-existing
conjectures related to patterns in primes. In particular that
there exist infinitely many pairs of

- Sophie Germain primes: {x,2x + 1}
- Sexy prime: {x,x + 6}
- Cousin primes: {x,x + 4}

- Twin primes: {x,x + 2}

Sophie Germain
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Twin Prime Conjecture

- The last few examples had the form {x,x + c} for some c € N even
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Twin Prime Conjecture

- The last few examples had the form {x,x + c} for some c € N even
- The dream is to prove the twin prime conjecture, that is the case when ¢ = 2.
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Twin Prime Conjecture

- The last few examples had the form {x,x + c} for some c € N even

- The dream is to prove the twin prime conjecture, that is the case when ¢ = 2.

- In 2013, Zhang proved there exists some ¢ < 70 million for which the statement holds
- With some tweaking of Zhang's work, the bound was able to be reduced to 20 million
- Polymath8 reduced this further to 4680

- New methods by Tao and Maynard independently reduced this bound to 246
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Twin Prime Conjecture

- It seems very intuitive that there should be infinitely many twin primes
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Twin Prime Conjecture

- It seems very intuitive that there should be infinitely many twin primes

- Many primes we often encounter (3 and 5, 11 and 13) are twin primes
- The smallest pair greater than a billion is 1,000, 000, 007 and 1,000, 000, 009
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Twin Prime Conjecture

- It seems very intuitive that there should be infinitely many twin primes
- Many primes we often encounter (3 and 5, 11 and 13) are twin primes
- The smallest pair greater than a billion is 1,000, 000, 007 and 1,000, 000, 009

- How often do they occur?

16 /21
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Hardy-Littlewood Conjecture

- By the prime number theorem, the number of primes less than n is asymptotic to

n

logn

- So we may expect the number of primes p such that p + 2 is prime to be asymptotic

to
n

(logn)?
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Hardy-Littlewood Conjecture

- By the prime number theorem, the number of primes less than n is asymptotic to

n
logn

- So we may expect the number of primes p such that p + 2 is prime to be asymptotic

to
n

(logn)?
- This clearly can’t be true as the same argument would apply to p and p + 1
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Hardy-Littlewood Conjecture

- The issue is p being prime and p + 2 being prime are dependent events so we need
to correct for this.
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Hardy-Littlewood Conjecture

- The issue is p being prime and p + 2 being prime are dependent events so we need
to correct for this.

- We introduce the constant

1-2/q
=2 —— =1.32032 16...
C || T=1/q)2 3203236316

q prime
q=3

which takes into account the probability that p and p + 2 have common divisors.
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Hardy-Littlewood Conjecture

Hardy-Littlewood Conjecture
The number of pairs of primes p and p + 2 less than or equal to n € N is asymptotic to

n
(logn)?

Patterns in Primes 9/



Hardy-Littlewood Conjecture

Hardy-Littlewood Conjecture
The number of pairs of primes p and p + 2 less than or equal to n € N is asymptotic to

n
(logn)?

- There are 8 twin primes less than 100, our estimate precicts there to be roughly 6.225,
a 22% error.

- There are 3,424,506 twin primes less than a billion, our estimate predicts there to be
roughly 3,074, 425, a 10% error.
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Ulam Spiral
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Conclusion

- Like Schinzel's, Bunyakovsky's and the Twin Prime Conjecture, the Hardy-Littlewood
Conjecture seems almost certainly true yet we seem far from proving it

- It seems easy for us to recognise patterns among the primes but the truth behind
them is far more elusive
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