Patterns in Primes and Bunyakovsky's Conjecture

Bruno Eaves, Ivan Noden, Ioannis Pantelidakis

• Prime numbers are largely elusive and functions to generate them are complex and computationally intensive.

- Prime numbers are largely elusive and functions to generate them are complex and computationally intensive.
- However, there is a polynomial *f ∈* Z[*x*] such that *f*(*n*) is prime for infinitely many *n ∈* Z.

- Prime numbers are largely elusive and functions to generate them are complex and computationally intensive.
- However, there is a polynomial *f ∈* Z[*x*] such that *f*(*n*) is prime for infinitely many *n ∈* Z.
- Of course, $f(x) = x$.

- Prime numbers are largely elusive and functions to generate them are complex and computationally intensive.
- However, there is a polynomial *f ∈* Z[*x*] such that *f*(*n*) is prime for infinitely many *n ∈* Z.
- Of course, $f(x) = x$.
- Are there any more?

• Consider the polynomial $p(x) = x^2 + x + 41$

- Consider the polynomial $p(x) = x^2 + x + 41$
- If we calculate its first few values, see that
	- $p(0) = 41$
	- $p(1) = 43$
	- $p(2) = 47$
	- $p(3) = 53$

are all prime.

- Consider the polynomial $p(x) = x^2 + x + 41$
- If we calculate its first few values, see that
	- $p(0) = 41$
	- $p(1) = 43$
	- $p(2) = 47$
	- $p(3) = 53$

are all prime.

• It turns out *p*(*n*) is prime for all *n ∈ {*0*, . . . ,* 39*}*

- Consider the polynomial $p(x) = x^2 + x + 41$
- If we calculate its first few values, see that
	- $p(0) = 41$
	- $p(1) = 43$
	- $p(2) = 47$
	- $p(3) = 53$

are all prime.

- It turns out *p*(*n*) is prime for all *n ∈ {*0*, . . . ,* 39*}*
- Even though *p*(40) is composite, *p*(42) is prime again.

- Consider the polynomial $p(x) = x^2 + x + 41$
- If we calculate its first few values, see that
	- $p(0) = 41$
	- $p(1) = 43$
	- $p(2) = 47$
	- $p(3) = 53$

are all prime.

- It turns out *p*(*n*) is prime for all *n ∈ {*0*, . . . ,* 39*}*
- \cdot Even though $p(40)$ is composite, $p(42)$ is prime again.
- Is *p* prime infinitely often?

• For all *f ∈* Z[*x*], do there exist infinitely many *n ∈* N such that *f*(*n*) is prime?

- For all *f ∈* Z[*x*], do there exist infinitely many *n ∈* N such that *f*(*n*) is prime?
- No!

- For all *f ∈* Z[*x*], do there exist infinitely many *n ∈* N such that *f*(*n*) is prime?
- No!
- If we stick to the convention that prime numbers are positive then since polynomials like *−x* ² + 4 are only positive for a finite number of natural numbers it can clearly only be prime finitely many times.

• What if *f* has a positive leading coefficient?

- What if *f* has a positive leading coefficient?
- No!

- What if *f* has a positive leading coefficient?
- No!
- Consider a polynomial like 2*x* 2 .
- \cdot This will only be prime for $x = 1$ as every other value will be divisible by 2.

- What if *f* has a positive leading coefficient?
- No!
- Consider a polynomial like 2*x* 2 .
- \cdot This will only be prime for $x = 1$ as every other value will be divisible by 2.
- To account for this, we can discount polynomials *f* where $gcd(f(1), f(2), ...) \neq 1$.
- If this were the case, there must be some prime *p* such that *p* divides *f*(*n*) for all natural numbers *n*.
- However, *f*(*n*) can only equal *p* a finite number of times.
- So every other value of *f*(*n*) will have *p* as a proper divisor.

• What if *f* is also such that $gcd(f(1), f(2), ...) = 1$?

• What if *f* is also such that $gcd(f(1), f(2), ...) = 1$?

• No!

- What if *f* is also such that $gcd(f(1), f(2), ...) = 1$?
- No!
- \cdot Consider $f(x) = 2x^4 7x^2 + 3 = (x^2 3)(2x^2 1).$
- \cdot Note then that $f(n)$ can be written as a product of two integers.
- One of these factors can be *±*1 only finitely many times.
- So *f*(*n*) can be prime only finitely many times.
- Clearly this is true whenever *f* is reducible.

Bunyakovsky's Conjecture

Let $f \in \mathbb{Z}[x]$ be such that

- *f* is irreducible over $\mathbb Z$
- The leading coefficient of *f* is positive
- $gcd(f(1), f(2), f(3), ...) = 1$

then there are infinitely many $n \in \mathbb{N}$ such that $f(n)$ is prime.

Viktor Bunyakovksy

Bunyakovsky's Conjecture

Let $f \in \mathbb{Z}[x]$ be such that

- *f* is irreducible over $\mathbb Z$
- The leading coefficient of *f* is positive
- $gcd(f(1), f(2), f(3), ...) = 1$

then there are infinitely many $n \in \mathbb{N}$ such that $f(n)$ is prime.

Viktor Bunyakovksy

We believe this to be true but we have only been able to prove so when *f* is linear. This case is known as Dirichlet's theorem.

• We consider the case $f(x) = mx + a$ with a, m coprime

- We consider the case $f(x) = mx + a$ with a, m coprime
- See that this case is equivalent to asking if there are infinitely many primes congruent to *a* mod *m*

- We consider the case $f(x) = mx + a$ with a, m coprime
- See that this case is equivalent to asking if there are infinitely many primes congruent to *a* mod *m*
- We can prove some cases using a method similar to Euclid's.

- We consider the case $f(x) = mx + a$ with a, m coprime
- See that this case is equivalent to asking if there are infinitely many primes congruent to *a* mod *m*
- We can prove some cases using a method similar to Euclid's.
- How can we do it in general?

• Let's start simpler, can we prove such primes exist?

- Let's start simpler, can we prove such primes exist?
- Assume it is true, so that, for all coprime integers *m* and *a*, there exists a prime congruent to *a* mod *m*.
- \cdot Fix a pair of coprime integers m_0 and a_0
- There thus exists $x \in \mathbb{Z}$ such that $p = m_0 x + a_0$ is prime.
- Note, *p* and m_0 are coprime so there exists a $y \in \mathbb{Z}$ such that $q = m_0 y + p$ is prime.

- Let's start simpler, can we prove such primes exist?
- Assume it is true, so that, for all coprime integers *m* and *a*, there exists a prime congruent to *a* mod *m*.
- \cdot Fix a pair of coprime integers m_0 and a_0
- There thus exists $x \in \mathbb{Z}$ such that $p = m_0x + a_0$ is prime.
- Note, *p* and m_0 are coprime so there exists a $y \in \mathbb{Z}$ such that $q = m_0 y + p$ is prime.
- But $q = m_0y + p = m_0(x + y) + a_0$.
- \cdot So, *q* is another prime congruent to a_0 mod m_0 but different from *p*.
- It follows by induction that there must be infinitely many primes congruent to *a*⁰ mod *m*0.

- Let's start simpler, can we prove such primes exist?
- Assume it is true, so that, for all coprime integers *m* and *a*, there exists a prime congruent to *a* mod *m*.
- \cdot Fix a pair of coprime integers m_0 and a_0
- There thus exists $x \in \mathbb{Z}$ such that $p = m_0x + a_0$ is prime.
- Note, *p* and m_0 are coprime so there exists a $y \in \mathbb{Z}$ such that $q = m_0 y + p$ is prime.
- But $q = m_0y + p = m_0(x + y) + a_0$.
- \cdot So, *q* is another prime congruent to a_0 mod m_0 but different from *p*.
- It follows by induction that there must be infinitely many primes congruent to *a*⁰ mod *m*0.
- Thus, if $f(x) = mx + a$ is prime once then it is prime infinitely often.

• To illustrate how the proof works, we will prove there are infinitely many primes.

- To illustrate how the proof works, we will prove there are infinitely many primes.
- We can write

$$
\sum_{n \in \mathbb{N}} \frac{1}{n^s} = \prod_{p \text{ prime}} (1 - p^{-s})^{-1}
$$

• Taking logarithms and manipulating we get

$$
\sum_{p \text{ prime}} \frac{1}{p^s} = \log \sum_{n \in \mathbb{N}} \frac{1}{n^s} + g(s)
$$

• RHS diverges as *s →* 1 so LHS must as well, thus there are infinitely many primes

- To illustrate how the proof works, we will prove there are infinitely many primes.
- We can write

$$
\sum_{n \in \mathbb{N}} \frac{1}{n^s} = \prod_{p \text{ prime}} (1 - p^{-s})^{-1}
$$

• Taking logarithms and manipulating we get

$$
\sum_{p \text{ prime}} \frac{1}{p^s} = \log \sum_{n \in \mathbb{N}} \frac{1}{n^s} + g(s)
$$

- RHS diverges as *s →* 1 so LHS must as well, thus there are infinitely many primes
- In a similar way, we can show that the series

$$
\sum_{\substack{p \equiv a \bmod m \\ p \text{ prime}}} \frac{1}{p^s}
$$

diverges as *s →* 1, proving Dirichlet's theorem.

- Recall, we found $p(x) = x^2 + x + 41$ was prime for its first 40 values.
- Now we know linear polynomials are prime infinitely often, can we beat that?

- Recall, we found $p(x) = x^2 + x + 41$ was prime for its first 40 values.
- Now we know linear polynomials are prime infinitely often, can we beat that?

Green-Tao Theorem

For all $k \in \mathbb{N}$ there exists $f \in \mathbb{Z}[x]$ linear such that $f(n)$ is prime for all $n \in \{0, \ldots, k-1\}$.

• For example, if $k = 10$ we can consider $f(x) = 210x + 199$

- For example, if $k = 10$ we can consider $f(x) = 210x + 199$
- The coefficients grow very quickly as *k* increases
- The 'smallest' they can be for *k* = 20 is 18846497670*x* + 214861583621

- For example, if $k = 10$ we can consider $f(x) = 210x + 199$
- The coefficients grow very quickly as *k* increases
- The 'smallest' they can be for *k* = 20 is 18846497670*x* + 214861583621
- We expect the last prime in the sequence should be around

$$
\left(\frac{k}{2}e^{-\gamma}\right)^{k/2}
$$

where $\gamma = \lim_{n \to \infty} \left(-\log n + 1 + \frac{1}{2} + \cdots + \frac{1}{n} \right)$

- For example, if $k = 10$ we can consider $f(x) = 210x + 199$
- The coefficients grow very quickly as *k* increases
- The 'smallest' they can be for *k* = 20 is 18846497670*x* + 214861583621
- We expect the last prime in the sequence should be around

$$
\left(\frac{k}{2}e^{-\gamma}\right)^{k/2}
$$

where $\gamma = \lim_{n \to \infty} \left(-\log n + 1 + \frac{1}{2} + \cdots + \frac{1}{n} \right)$

- \cdot So if *f* were to beat $x^2 + x + 41$ and $f(40)$ was prime then $f(40)$ would be around 4.9×10^{29}
- For comparison, there are roughly 7 *×* 10²⁷ atoms in a human body

One final remark:

- \cdot Suppose $mx + a$ is prime for the first k^d values
- Then $mx^d + a$ is prime for the first *k* values

Schinzel's Conjecture

Let *{f*¹ *, f*2*, . . . , fk}* be a finite set of non-constant, irreducible polynomials over Z with positive leading coefficients such that there does not exist a prime *p* where *p* divides $f_1(n) \cdots f_k(n)$ for all $n \in \mathbb{N}$.

Then there are infinitely many $n \in \mathbb{Z}$ such that $f_1(n), \ldots, f_k(n)$ are all prime.

Andrzej Schinzel

This final condition prevents counter-examples such as $\{x, x + 1\}$ where 2 always divides $x(x + 1)$.

Schinzel's conjecture generalises many pre-existing conjectures related to patterns in primes. In particular that there exist infinitely many pairs of

• Sophie Germain primes: *{x,* 2*x* + 1*}*

Sophie Germain

Schinzel's conjecture generalises many pre-existing conjectures related to patterns in primes. In particular that there exist infinitely many pairs of

- Sophie Germain primes: *{x,* 2*x* + 1*}*
- Sexy prime: $\{x, x + 6\}$

Sophie Germain

Schinzel's conjecture generalises many pre-existing conjectures related to patterns in primes. In particular that there exist infinitely many pairs of

- Sophie Germain primes: *{x,* 2*x* + 1*}*
- Sexy prime: $\{x, x + 6\}$
- Cousin primes: $\{x, x + 4\}$

Sophie Germain

Schinzel's conjecture generalises many pre-existing conjectures related to patterns in primes. In particular that there exist infinitely many pairs of

- Sophie Germain primes: *{x,* 2*x* + 1*}*
- Sexy prime: $\{x, x + 6\}$
- Cousin primes: $\{x, x + 4\}$
- Twin primes: $\{x, x + 2\}$

Sophie Germain

• The last few examples had the form *{x, x* + *c}* for some *c ∈* N even

- The last few examples had the form *{x, x* + *c}* for some *c ∈* N even
- \cdot The dream is to prove the twin prime conjecture, that is the case when $c = 2$.

- The last few examples had the form *{x, x* + *c}* for some *c ∈* N even
- \cdot The dream is to prove the twin prime conjecture, that is the case when $c = 2$.
- In 2013, Zhang proved there exists some *c <* 70 million for which the statement holds
- With some tweaking of Zhang's work, the bound was able to be reduced to 20 million
- Polymath8 reduced this further to 4680
- New methods by Tao and Maynard independently reduced this bound to 246

• It seems very intuitive that there should be infinitely many twin primes

- It seems very intuitive that there should be infinitely many twin primes
- Many primes we often encounter (3 and 5, 11 and 13) are twin primes
- The smallest pair greater than a billion is 1*,* 000*,* 000*,* 007 and 1*,* 000*,* 000*,* 009

- It seems very intuitive that there should be infinitely many twin primes
- Many primes we often encounter (3 and 5, 11 and 13) are twin primes
- The smallest pair greater than a billion is 1*,* 000*,* 000*,* 007 and 1*,* 000*,* 000*,* 009
- How often do they occur?

• By the prime number theorem, the number of primes less than *n* is asymptotic to

n log *n*

 \cdot So we may expect the number of primes p such that $p + 2$ is prime to be asymptotic to *n*

$$
\frac{1}{(\log n)^2}
$$

• By the prime number theorem, the number of primes less than *n* is asymptotic to

n log *n*

 \cdot So we may expect the number of primes p such that $p + 2$ is prime to be asymptotic to *n*

$$
\frac{n}{(\log n)^2}
$$

 \cdot This clearly can't be true as the same argument would apply to p and $p+1$

 \cdot The issue is p being prime and $p+2$ being prime are dependent events so we need to correct for this.

- \cdot The issue is p being prime and $p+2$ being prime are dependent events so we need to correct for this.
- We introduce the constant

$$
C = 2 \prod_{\substack{q \text{ prime} \\ q \ge 3}} \frac{1 - 2/q}{(1 - 1/q)^2} = 1.3203236316\dots
$$

which takes into account the probability that p and $p + 2$ have common divisors.

Hardy-Littlewood Conjecture

The number of pairs of primes p and $p + 2$ less than or equal to $n \in \mathbb{N}$ is asymptotic to

$$
C\frac{n}{(\log n)^2}
$$

Hardy-Littlewood Conjecture

The number of pairs of primes p and $p + 2$ less than or equal to $n \in \mathbb{N}$ is asymptotic to

 $C \frac{n}{a}$ $(\log n)^2$

- There are 8 twin primes less than 100, our estimate precicts there to be roughly 6*.*225, a 22% error.
- There are 3*,* 424*,* 506 twin primes less than a billion, our estimate predicts there to be roughly 3*,* 074*,* 425, a 10% error.

Ulam Spiral

Conclusion

- Like Schinzel's, Bunyakovsky's and the Twin Prime Conjecture, the Hardy-Littlewood Conjecture seems almost certainly true yet we seem far from proving it
- It seems easy for us to recognise patterns among the primes but the truth behind them is far more elusive

Questions?