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Bunyakovsky’s Conjecture

• Prime numbers are largely elusive and functions to generate them are complex and
computationally intensive.

• However, there is a polynomial f ∈ Z[x] such that f(n) is prime for infinitely many
n ∈ Z.

• Of course, f(x) = x.
• Are there any more?
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Bunyakovsky’s Conjecture

• Consider the polynomial p(x) = x2 + x+ 41

• If we calculate its first few values, see that
• p(0) = 41
• p(1) = 43
• p(2) = 47
• p(3) = 53

are all prime.
• It turns out p(n) is prime for all n ∈ {0, . . . , 39}
• Even though p(40) is composite, p(42) is prime again.
• Is p prime infinitely often?
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Bunyakovsky’s Conjecture

• For all f ∈ Z[x], do there exist infinitely many n ∈ N such that f(n) is prime?

• No!
• If we stick to the convention that prime numbers are positive then since polynomials
like −x2 + 4 are only positive for a finite number of natural numbers it can clearly
only be prime finitely many times.
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Bunyakovsky’s Conjecture

• What if f has a positive leading coefficient?

• No!
• Consider a polynomial like 2x2.
• This will only be prime for x = 1 as every other value will be divisible by 2.
• To account for this, we can discount polynomials f where gcd(f(1), f(2), . . .) ̸= 1.
• If this were the case, there must be some prime p such that p divides f(n) for all
natural numbers n.

• However, f(n) can only equal p a finite number of times.
• So every other value of f(n) will have p as a proper divisor.
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Bunyakovsky’s Conjecture

• What if f is also such that gcd(f(1), f(2), . . .) = 1?

• No!
• Consider f(x) = 2x4 − 7x2 + 3 = (x2 − 3)(2x2 − 1).
• Note then that f(n) can be written as a product of two integers.
• One of these factors can be ±1 only finitely many times.
• So f(n) can be prime only finitely many times.
• Clearly this is true whenever f is reducible.
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Bunyakovsky’s Conjecture

Bunyakovsky’s Conjecture
Let f ∈ Z[x] be such that

• f is irreducible over Z
• The leading coefficient of f is positive
• gcd(f(1), f(2), f(3), . . .) = 1

then there are infinitely many n ∈ N such that f(n) is prime.
Viktor Bunyakovksy

We believe this to be true but we have only been able to prove so when f is linear. This
case is known as Dirichlet’s theorem.
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Dirichlet’s Theorem



Dirichlet’s Theorem

• We consider the case f(x) = mx+ a with a,m coprime

• See that this case is equivalent to asking if there are
infinitely many primes congruent to a mod m

• We can prove some cases using a method similar to
Euclid’s.

• How can we do it in general?

Dirichlet
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Dirichlet’s Theorem

• Let’s start simpler, can we prove such primes exist?

• Assume it is true, so that, for all coprime integers m and a, there exists a prime
congruent to a mod m.

• Fix a pair of coprime integers m0 and a0
• There thus exists x ∈ Z such that p = m0x+ a0 is prime.
• Note, p and m0 are coprime so there exists a y ∈ Z such that q = m0y+ p is prime.
• But q = m0y+ p = m0(x+ y) + a0.
• So, q is another prime congruent to a0 mod m0 but different from p.
• It follows by induction that there must be infinitely many primes congruent to
a0 mod m0.

• Thus, if f(x) = mx+ a is prime once then it is prime infinitely often.
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Dirichlet’s Theorem

• To illustrate how the proof works, we will prove there are infinitely many primes.

• We can write ∑
n∈N

1
ns =

∏
p prime

(1− p−s)−1

• Taking logarithms and manipulating we get∑
p prime

1
ps = log

∑
n∈N

1
ns + g(s)

• RHS diverges as s → 1 so LHS must as well, thus there are infinitely many primes
• In a similar way, we can show that the series∑

p≡a mod m
p prime

1
ps

diverges as s → 1, proving Dirichlet’s theorem.
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Green-Tao Theorem

• Recall, we found p(x) = x2 + x+ 41 was prime for its first 40 values.
• Now we know linear polynomials are prime infinitely often, can we beat that?

Green-Tao Theorem
For all k ∈ N there exists f ∈ Z[x] linear such that f(n) is prime for all n ∈ {0, . . . , k− 1}.
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Green-Tao Theorem

• For example, if k = 10 we can consider f(x) = 210x+ 199

• The coefficients grow very quickly as k increases
• The ’smallest’ they can be for k = 20 is 18846497670x+ 214861583621
• We expect the last prime in the sequence should be around(

k
2e

−γ

)k/2

where γ = limn→∞(− log n+ 1+ 1
2 + · · ·+ 1

n )

• So if f were to beat x2 + x+ 41 and f(40) was prime then f(40) would be around
4.9× 1029

• For comparison, there are roughly 7× 1027 atoms in a human body
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Green-Tao Theorem

One final remark:

• Suppose mx+ a is prime for the first kd values
• Then mxd + a is prime for the first k values
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Schinzel’s Conjecture



Schinzel’s Conjecture

Schinzel’s Conjecture
Let {f1, f2, . . . , fk} be a finite set of non-constant, irreducible
polynomials over Z with positive leading coefficients such
that there does not exist a prime p where p divides
f1(n) · · · fk(n) for all n ∈ N.

Then there are infinitely many n ∈ Z such that f1(n), . . . , fk(n)
are all prime.

Andrzej Schinzel

This final condition prevents counter-examples such as {x, x+ 1} where 2 always divides
x(x+ 1).
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Schinzel’s Conjecture

Schinzel’s conjecture generalises many pre-existing
conjectures related to patterns in primes. In particular that
there exist infinitely many pairs of

• Sophie Germain primes: {x, 2x+ 1}

• Sexy prime: {x, x+ 6}
• Cousin primes: {x, x+ 4}
• Twin primes: {x, x+ 2}

Sophie Germain
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Twin Prime Conjecture

• The last few examples had the form {x, x+ c} for some c ∈ N even

• The dream is to prove the twin prime conjecture, that is the case when c = 2.
• In 2013, Zhang proved there exists some c < 70 million for which the statement holds
• With some tweaking of Zhang’s work, the bound was able to be reduced to 20 million
• Polymath8 reduced this further to 4680
• New methods by Tao and Maynard independently reduced this bound to 246
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Twin Prime Conjecture

• It seems very intuitive that there should be infinitely many twin primes

• Many primes we often encounter (3 and 5, 11 and 13) are twin primes
• The smallest pair greater than a billion is 1, 000, 000, 007 and 1, 000, 000, 009
• How often do they occur?
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Hardy-Littlewood Conjecture

• By the prime number theorem, the number of primes less than n is asymptotic to

n
log n

• So we may expect the number of primes p such that p+ 2 is prime to be asymptotic
to

n
(log n)2

• This clearly can’t be true as the same argument would apply to p and p+ 1
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Hardy-Littlewood Conjecture

• The issue is p being prime and p+ 2 being prime are dependent events so we need
to correct for this.

• We introduce the constant

C = 2
∏

q prime
q≥3

1− 2/q
(1− 1/q)2 = 1.3203236316 . . .

which takes into account the probability that p and p+ 2 have common divisors.
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Hardy-Littlewood Conjecture

Hardy-Littlewood Conjecture
The number of pairs of primes p and p+ 2 less than or equal to n ∈ N is asymptotic to

C n
(log n)2

• There are 8 twin primes less than 100, our estimate precicts there to be roughly 6.225,
a 22% error.

• There are 3, 424, 506 twin primes less than a billion, our estimate predicts there to be
roughly 3, 074, 425, a 10% error.
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Ulam Spiral
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Conclusion

• Like Schinzel’s, Bunyakovsky’s and the Twin Prime Conjecture, the Hardy-Littlewood
Conjecture seems almost certainly true yet we seem far from proving it

• It seems easy for us to recognise patterns among the primes but the truth behind
them is far more elusive
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Questions?
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